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Abstract

The furious pace of Moore’s Law is driving computer architecture into a realm where the the speed
of light is the dominant factor in system latencies. The number of clock cycles to span a chip
are increasing, while the number of bits that can be accessed within a clock cycle is decreasing.
Hence, it is becoming more difficult to hide latency. One alternative solution is to reduce latency
by migrating threads and data, but the overhead of existing implementations has previously made
migration an unserviceable solution so far.

| present an architecture, implementation, and mechanisms that reduces the overhead of mi-
gration to the point where migration is a viable supplement to other latency hiding mechanisms,
such as multithreading. The architecture is abstract, and presents programmers with a simple, uni-
form fine-grained multithreaded parallel programming model with implicit memory management.
In other words, the spatial nature and implementation details (such as the number of processors) of
a parallel machine are entirely hidden from the programmer. Compiler writers are encouraged to
devise programming languages for the machine that guide a programmer to express their ideas in
terms of objects, since objects exhibit an inherent physical locality of data and code. The machine
implementation can then leverage this locality to automatically distribute data and threads across
the physical machine by using a set of high performance migration mechanisms.

An implementation of this architecture could migrate a null thread in 66 cycles — over a factor
of 1000 improvement over previous work. Performance also scales well; the time required to move
a typical thread is only 4 to 5 times that of a null thread. Data migration performance is similar, and
scales linearly with data block size. Since the performance of the migration mechanism is on par
with that of an L2 cache, the implementation simulated in my work has no data caches and relies
instead on multithreading and the migration mechanism to hide and reduce access latencies.

Thesis Supervisor: Thomas F. Knight, Jr.
Title: Senior Research Scientist
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Chapter 1

Introduction

You can’t fake memory bandwidth that isn’t there.

—Seymour Cray on why the Cray-1 had no caches

Most data and thread migration mechanisms to date are slow when compared to other latency man-
agement technigues. This thesis introduces an architecture, ADAM, that enables a simple hardware
implementation of data and thread migration. This implementation reduces the overhead of migra-
tion to the point where it is comparable to other hardware-assisted latency management techniques,
such as caching.

Data migration is useful to reduce access latencies in situations where the working set is larger
than cache. Itis also useful in reducing or redistributing network traffic in situations where hotspots
are caused by contention for multiple data objects. Data migration can also be used to emulate the
function of caches in systems that feature no data caches.

Thread migration is useful to reduce access latencies in situations where multiple threads are
contending for a single piece of data. Like data migration, it is also useful in situations where
hotspots can be alleviated by redistributing the sources and destinations of network traffic. Thread
migration is also useful for load-balancing, particularly in situations where memory contention is
low.

Data and thread migration can be used together to help manage access latencies in situations
where many threads are sharing information in an unpredictable fashion among many pieces of
data, as might be the case in an enterprise database application. Data and thread migration can also
be used to enhance system reliability as well, if faults can be predicted far enough in advance so

that the failing node can be flushed of its contents.
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1.1 Contributions

The primary contribution of my thesis isfast, low-overhead data and thread migration mech-

anism. In terms of processor cycles, the mechanism outlined in my thesis represents greater than a
1000-fold increase in performance over previous software-based migration mechanisms. As aresult,
data and thread migration overheads are similar to L2 cache fills on a conventional uni-processor
system.

The key architectural features that enable my data and thread migration mechanisragiare a
fied thread and data representation using capabilitiesand interthread communication and
memory access through architecturally explicit queues Threads and data in my architecture,
ADAM, are accessed using a capability representation with tags that encode base and bounds infor-
mation. In other words, every pointer has associated with it the region of data it can access, and this
information trivializes figuring out what to move during migration. Architecturally explicit queues,
on the other hand, simplify many of the ancillary tasks associated with migrating threads and data,
such as the movement of stacks, the migration and placement of communication structures, concur-
rent access to migrating structures, and pointer updates after migration.

My thesis also describes @amplementation outline of ADAM dubbed the “Q-Machine”. The
implementation technology is presumed to be 35 nm CMOS silicon, available in volume around
2010, and features no data caches; instead, it relies on the migration mechanism and multithreading
to maintain good performance and high processor utilization. The proposed implementation is sim-
ulated with the ADAM System Simulator (ASS); it is this simulator that provides the results upon
which the ADAM architecture is evaluated. Note that there is no requirement for advanced tech-
nology to implement the ADAM; one could make an ADAM implementation today, if so desired.
The 2010 technology point was chosen to evaluate the ADAM architecture because it would match

a likely tape-out time frame of the architecture’s implementation.

1.2 Organization of This Work

Chapter 2, “Background”, discusses some of the advantages and disadvantages of a migration
scheme over more conventional latency management schemes. It also reviews, at a high level, some
of the problems encountered in previous migration schemes; a more detailed review of migration
mechanisms is presented in Chapter 4. Chapter 2 closes with a differentiation of this work from

its predecessors in a brief discussion of the architectural pedigree of the ADAM and its Q-Machine
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implementation.

Chapter 3, “Aries Decentralized Abstract Machine”, describes the ADAM in detail. This chapter
lays the foundation for the programming model of the ADAM through a simple code example,
followed up with a discussion of the architectural details relevant to a migration implementation. A
detailed discussion of other architectural features can be found in Appendix B.

Chapter 4, “Migration Mechanism in a Decentralized Computing Environment”, presents the
implementation of the migration mechanisms. The chapter begins with a survey of previous work
involving data and thread migration; this survey includes both mechanisms and migration control al-
gorithms, since their implementation details are intimately associated. | then describe the migration
mechanism in detail.

Chapter 5, “Implementation of the ADAM: Hardware and Simulation”, describes an implemen-
tation of ADAM. This implementation is known as the Q-Machine. This chapter summarizes the
machine organization and implementation technology assumptions of the simulator used to evaluate
my migration mechanisms.

In the next chapter, “Machine and Migration Characterization” (Chapter 6), | characterize the
performance of the implementation. The chapter starts with two simple micro-kernel benchmarks
and some formal analysis of the migration mechanism. Then, | present results for some more
comprehensive benchmarks, Quicksort, Matrix Multiply and N-Body, with simple migration control
heuristics driving the migration mechanisms.

The thesis concludes in chapter 7 with a discussion of further developments for the ADAM
architecture, areas for improvement and further research, and programming languages for the ma-
chine. Note that while a detailed discussion of programming languages for the ADAM is outside the
scope of this thesis, | did not work in a programming language vacuum. A strong point of using an
abstract machine model is that compiler writers can begin their work on day one, and in fact, that is
the case. Benjamin Vandiver, an M.Eng student in my research group, has developed two languages,
CouatlandPeople and compilers for these languages to the ADAM architecture. Couatl is a basic
object-oriented language that we used in the early stages of architecture development to hammer
out the abstract machine model and to determine the unique strengths and weaknesses of a queue
based architecture. The follow-on language, People, is a more sophisticated language supporting
streaming constructs that leverages the availability of architectural queues at the language level. |
refer interested readers to his M.Eng thesis [Van02].

A summary of the abstraction layers employed by this thesis can be found in figure 1-1. ADAM
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is a pure abstraction, a boundary between compilers and hardware. Q-Machine is the implemen-
tation of ADAM that realizes the fast data and thread migration mechanisms made possible by
ADAM. The ADAM System Simulator (ASS) is my software simulation of the Q-Machine, written

in Java. The Q-Machine could also be implemented directly in hardware, but that is not within the

scope of this thesis.

End-User Applications

compilers Couatl People

------------ --== Aries Decentralized Abstract Machine (ADAM) --

Q-Machine (Migration
Implementation)

ADAM System
"hardware" Simulator (ASS)
Java Virtual Direct Hardware
Machine Implementation
Hardware

Figure 1-1: Overview of the abstraction layers in this thesis. Couatl and People are compilers
written by Ben Vandiver.

| also provide a set of appendices that describe various technical nits of the architecture, includ-
ing the bit-level details of the ADAM architecture, physical queue file (PQF) implementation, the

network interface implementation, network protocols, and opcodes of the ADAM.
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Chapter 2

Background

TSMC sees no insurmountable challenges in the path to scaling
[silicon CMOS technology] to the 9 nm node. The question is,
will the market be ready for it?

—Calvin Chenming Hu, CTO of TSMC at a talk at MIT

This chapter starts by characterizing the ADAM architecture in terms of its use of latency manage-
ment techniques. This chapter then discusses in greater detail a comparison of various migration

techniques. Finally, this chapter closes with a discussion of ADAM’s architectural pedigree.

2.1 Latency Management Techniques

Numerous latency management techniques are available to computer architects looking to design
large parallel machines. Latency management techniques can be divided into two broad categories,

latency reduction, and latency hiding.

2.1.1 Latency Reduction

Latency reduction techniques include architectural trade-offs to optimize local memory access la-
tency, such as non-uniform memory access (NUMA) and cache-only memory architecture (COMA).
NUMA architectures cope with the spatial reality of large machines explicitly; thus, local memory
references are faster than remote memory references. This is in contrast with bus-based architec-
tures that have uniform memory access times. NUMAs typically employ spatial interconnection
networks that are inherently more scalable than bus-based architectures. While NUMASs enable bet-

ter scalability, they are confronted with the issue of how to arrange data so that optimal performance
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is achieved. One popular method of addressing the data placement issue is to use a directory-based
cache coherence mechanism. Examples of cache-coherent NUMAs (ccNUMAS) include Stanford’s
DASH [LLG192], and MIT’s Alewife [ABC*95]. COMAs, on the other hand, feature automatic

data migration through the use of “attraction memories”. COMAs also employ spatial intercon-
nection networks that feature non-uniform memory access times, but in a COMA, memory has no
home location. Data migrates in a cache-coherent fashion throughout the machine to their points of
access. COMAs have the disadvantage of extra hardware complexity, but have an advantage over
NUMA machines when the working set of data is larger than the NUMA's cache size. The ADAM
architecture is similar to a COMA architecture, except that ADAM also features thread migration,
and that there are no caches—in other words, there can be only one valid copy of a piece data in the
machine. Removing cache semantics from memory reduces the hardware requirements, but causes
ADAM to lose the benefit of automatic data replication. ADAM attempts to compensate for this
loss by providing a hardware-recognized immutable data type that is write-once and can be freely
copied throughout the machine. Thread migration also helps compensate for this loss by allowing
threads that contend heavily for a single piece of memory to migrate toward the contested memory

location.

Latency reduction can also be applied at a lower level, through migration, replication, schedul-
ing, placement and caching. Replication is a property inherent in cache-coherent memory systems
where memory can be marked as exclusive or read-only, and several copies can exist throughout
the machine to reduce the perceived access latency at multiple nodes. As mentioned previously,
ADAM provides only limited support for data replication. Scheduling and placement are predictive
techniques that attempt to reduce latency and balance loads by allocating memory and scheduling
threads to be near each other. Scheduling and placement can be either directed explicitly by a pro-
grammer, inferred and statically linked in by a compiler, or directed by an intelligent runtime system.
Scheduling and placement are important latency reduction techniques in any architecture, but are
outside the scope of my thesis. A thorough discussion and comparison of migration techniques is

reserved for later in this chapter and in chapter 4.

Caching is perhaps the most widely used latency reduction mechanism. Caches reduce memory
latency by keeping the most recently accessed values in a fast memory close to the processor. Caches
rely on the statistically good spatial and temporal locality characteristics of data accesses found in
most programs. Caches also rely on exclusive ownership of data; since a copy is made of data in

main memory, a coherence mechanism is required for correct program execution in an environment
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where concurrent modification is a possibility. This coherence mechanism can present a challenge
when scaling up to very large multiprocessor machines. In particular, simple directory-based or
snoopy coherence mechanisms show poor scalability. Snoopy coherence mechanisms are used in
bus-based multiprocessors, and suffer from bandwidth limitations due to excess coherence traffic as
systems scale in size. Directory-based protocols are more scalable, but they also have their limits.
With a 64-byte block size, a simple directory-based cache coherence protocol has a memory over-
head of over 200% for a 1024-processor system [CS99], p.565. Technigues such as limited-pointer
schemes [ASHH88], extended pointer schemes [ALKK91], and sparse directories [GWM90] can
all be used to mitigate the overhead of cache coherence in large parallel systems, but at the cost of
more complex protocols or the need for special mechanisms to handle corner cases where the pro-
tocol breaks down. The other problem with caches is that technology scaling is not ideal; buffered
wire delays have been rising slightly faster than expected, and the expected capacity of caches per
access time is anticipated to decrease as process technologies progress [AHKBO0O] [McF97]. Fig-
ure 2-1 illustrates the fallout of non-ideal wire delay scaling. Since the ADAM architecture already
features data migration for latency reduction and can tolerate more access latency due to its use of
multithreading and decoupling, no data caches are used in the ADAM implementation outlined in
this thesis. The elimination of data caches alleviate the scaling concerns of data caches, and it also
helps relieve some of the access time pressure resulting from technology constraints. The down-
sides of this decision include slower single-threaded code execution and the loss of automatic data
replication inherent in cache coherence schemes. Note that the ADAM implementation, as previ-
ously mentioned, compensates for this loss of data replication in part by providing an immutable

data type, and in part by migrating threads toward heavily contested memory locations.

2.1.2 Latency Hiding

Latency hiding techniques include prefetching, decoupling, multithreading, relaxing memory con-
sistency, and producer-initiated communication.

Prefetching is the use of predictive mechanisms, either automatic or explicit, to access data
before a computation requires the data. The efficacy of prefetching is proportional to the accuracy
of the predictive mechanism. When the predictive mechanism is wrong, the system can potentially
pay a high cost, because improperly prefetched data could displace useful data while consuming
bandwidth that could be used for other useful work. Prefetching can be applied in the ADAM

architecture, but its implementation is beyond the scope of this thesis.
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Figure 2-1: Reachable chip area in top level metal, where area is measured in six-transistor SRAM
cells. Directly from [AHKBOO]

Decoupling is the use of explicit queues to hide access or compute latencies. Decoupling is
featured in decoupled access-execute (DAE) machines, such as the ZS-1ggDthe WM ar-
chitecture [Wul92] and the MT-DCAE [SKAOQ1]. Decoupled architectures can be thought of as a
type of programmed prefetch architecture, although the decoupling mechanism can also be used
to decouple control flow events as well. In a simple DAE architecture, processors are divided into
access and execute units, coupled by a set of queues. The access unit is allowed to “slip” ahead of
the execute unit, effectively prefetching data for the execute unit. Since the ADAM uses explicit
gueues to communicate with threads and to access memory, ADAM shares many of the benefits and

problems of DAE architectures.

Multithreading is the use of multiple thread contexts and a fast context switching mechanism
to hide memory access latencies. When one thread context stalls on a dependency that requires a
lengthy memory access, another thread context is swapped in, thus maintaining a high level of pro-
cessor utilization. However, multithreading can only effectively hide memory latency if there are
enough runnable contexts. As latencies increase, more parallelism is required. The HEP [Smi82a]
and TERA [AKK™95] architectures apply multithreading to hide access latencies; the ADAM ar-

chitecture uses this technique as well.

Relaxed memory consistency models and producer-initiated communication are architectural
and programmer-level methods for hiding latency. Relaxing memory consistency models hides
latency by allowing systems greater flexibility in hiding write latencies [LW95]. The choice of

memory consistency model has a great impact on how a machine is programmed (or compiled to).
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The ADAM uses a weak ordering model [DS90] similar to that employed in the Alpha [CS99]. Of
course, each thread is guaranteed that writes and reads complete in program order on the ADAM
as well. Producer-initiated communication reduces latency by cutting out one half of a round trip
when the producer and consumer relationships are well-defined. Instead of a consumer sending a
message to request data and waiting for the response, producer-initiated communication pushes data
into a consumer’s cache or queue. In a cache-coherent system, this can lead to higher coherence
traffic because all shared copies have to be updated on every write [LW95]. In ADAM, producer-
initiated communication is the only mode of communication when using mapped queues. There is
no coherence overhead for this style of communication in ADAM because the queue namespace is

separate from memory namespace, and all queue mappings are exclusive by definition.

2.2 Migration Mechanisms

Migration mechanisms tend to be tailor-made to a particular architecture, operating system, or ap-
plication. As a result, the features of migration schemes are equally diverse. For example, in
a network-of-workstations (NOW), migration mechanisms tend to operate on coarse-grained pro-
cesses and objects. Migration on NOWSs tend to be under dynamic run-time control, and migration
times are on the order of tens to hundreds of milliseconds. [RC96] On the other hand, computation
migration on Alewife [HWW93] implements structured activation frame movement throughout the
machine using statically compiled migration directives, yielding migration times on the order of
several hundreds of processor cycles.

At the least common denominator, every migration mechanism must do the following things:
figure out what to move, prepare the receiver, send the data, and then handle any forwarded requests
or pointer updates. Thread or process migration schemes also have to handle task scheduling is-
sues as well. Process migration in NOWs is incredibly inefficient and slow because the abstraction
boundary for processes is too high; for example, moving a process entails creating a virtual address
space and moving file handles. [RC96] introduces a faster, more streamlined version of process
migration that removes the restriction that communication producers be frozen during consumer
migration {.e., enables concurrent communication during migration), but even then process migra-
tion takes 14 ms. [CM97] also introduces faster techniques for dealing with pointer updates after
migration using explicitly managed pointer registries. The problem with explicitly managed pointer

registries, however, is that incorrect program execution results if the programmer forgets to register
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a pointer. DEMOS/MP [PM83], interestingly, is a multi-processor operating system introduced over

a decade before either [RC96] or [CM97], and it features automatic pointer updating and concurrent
communication during process migration. DEMOS/MP features explicit OS-managed communica-
tion queues for inter-process communication; this helps enable concurrent communication during
process migration and simplifies pointer updates because the migration manager does not have to
make guesses or conservative assumptions about the process communication mechanism. Unfor-
tunately, the DEMOS/MP paper contains little performance information on its process migration
mechanism, so it is more difficult to compare DEMOS/MP against other works. The ADAM thread
migration mechanism implements many features of the DEMOS/MP migration mechanism, except

at a finer grain and with hardware support.

On SMP-type machines, migration times are shorter, thanks to the tighter integration of network
interfaces and processors, generally faster interconnection networks, finer granularity of objects, and
globally shared system resources. Page migration in DASH, for example, takes 2 ms (about 66,000
memory cycles) [CDV 94]. This does not include the time spent waiting for locks in the kernel's
virtual memory system; the paper indicates that the response time for workloads were not improved
because of this overhead. Even if one could migrate threads in DASH by simply throwing a pro-
gram counter over the fence to another processor, the overhead of migrating the thread’s associated
process state—the stack and heap—would be fairly large, since at least two memory structures have to
be moved, perhaps at the page level of granularity. Thus, the thread scheduler should be aware of a

task’s memory footprint, and use cache affinity scheduling to achieve good performance’.$&pVv

Active Threads [WGQH98] introduces user-space thread migration, so as to bypass the overhead
of migrating kernel threads. In addition, Active Threads uses simple user-space messaging protocols
for communication, to cut the overhead of copying messages and buffers in OS space. User-space
thread migration reduces thread migration latencies down to aboytd Ebout 16,000 processor
cycles). Computation Migration [HWW93] also performs users-space thread migration, but in a
more restrictive fashion. In Computation Migration, static annotations in user code cause a thread
to spawn new procedures on remote nodes; also, [HWW93] makes no indication that inter-thread
communication resources are migrated. A single thread thus snakes its way through the machine,
with a trajectory that tracks the location of the working set of data. Computation Migration is fast,
as it requires only 651 cycles to start a new thread on a remote processor. Even so, a breakdown
of the costs of Computation Migration indicate that a large amount of time is spent in procedure

linkage, thread creation, and marshaling thread state. As a side note, Computation Migration is
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not used as the comparative benchmark for ADAM’s migration mechanism because Computation
Migration implements a restricted version of thread migration that does not accommodate the level
of dynamism or concurrency found in the next fastest migration implementation, Active Threads.

Hence, Active Threads is used as the comparison point for ADAM’s migration mechanism.

Note that this brief review of migration mechanisms is expanded upon in the background section

of chapter 4.

2.2.1 Discussion

The ADAM architecture structures threads, data, and their communication mechanisms in such a
way as to eliminate or drastically reduce the overheads experienced by the migration mechanisms
outlined above. For example, almost all migration mechanisms have to deal with pointer updates and
message forwarding. The issue is that interthread communications almost always use memory re-
sources, so that any thread migration requires movement of stacks, OS structures, or heap-allocated
communication structures. The ADAM architecture condenses communication structures into ex-
plicitly named resources through the use of explicit queues. As a result, communication state is
stored as part of thread state, and migration of a thread typically involves a single copy operation.
The use of bounded capabilities to represent a thread’s state in memory, as well as all heap data
structures, also simplifies migration, because the region of memory to be copied during migration
can be directly computed given a pointer to a thread or data object. The use of bounded capabilities
also offers more flexibility in the choice of migration granularity when compared to schemes that
require page-level migration, such as that used in DASH [€P4]. Another benefit of bounded
capabilities is that false data sharing is not possible. For example, in a conventional system two
objects can, by random chance, share a cache line or a page of memory (see figure 2-2). If the two
memory objects are concurrently accessed by threads on different nodes, the cache line or page of
memory will either end up ping-ponging between the nodes, or one thread will have to suffer un-
fair access times. On the downside, bounded capabilities does not help when a programmer writes
code that that explicitly shares objects among many scattered threads. In this case, thread migration

should be used to minimize access latencies.
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Figure 2-2: lllustration of the false sharing problem.

2.3 Architectural Pedigree

The genesis of the ADAM architecture lies in the Dataflow architectures, Decoupled-Access/Execute
(DAE) architectures, Processor-In-Memory (PIM) and Chip Multi-Processor (CMP) architectures,
and Cache Only Memory Architectures (COMA).

2.3.1 Dataflow

ADAM is perhaps most closely related to the dataflow family of architectures, in particular, *T.
Hence, a careful examination of the dataflow machines is important at this time.

Dataflow machines are a direct realization of dataflow graphs into computational hardware.
Arcs on a dataflow graph are decomposed into tokens. Each token is a continuation; it contains
a set of instructions and its evaluation context. The length of the instruction run and evaluation
context method encapsulated within a token can characterize the spectrum of dataflow architec-
tures. In the MIT Tagged-Token Dataflow Architecture (TTDA), each token represents roughly one
instruction and its immediate dependencies and results, and token storage is managed implicitly.
TTDA evolved into the Monsoon architecture, which has explicit evaluation context management
and single-instruction tokens. With Monsoon, tokens contained a value; pointers to an instruction,
and pointers to evaluation contexts that are compiler-generated frame allocations in a linearly ad-
dressed structure. Monsoon evolved into the P-RISC and *T architectures, which are machines
with tokens that effectively refer to instruction traces and relatively large "stack-frame” style ex-
plicitly allocated frames. The tokens in P-RISC and *T carried only an instruction pointer and a
frame pointer, as opposed to any actual data [AB93] [NA89]. One could take this one step further

and claim that a Simultaneous Multithreading (SMT) architecture is a dataflow machine with as
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many tokens as there are thread contexts, and that a conventional Von Neumann architecture is a
single-token dataflow machine. [LH94] provides an excellent overview of dataflow machines and

an analysis of their shortcomings.

Dataflow machines, while elegant, have a few fatal flaws. Their evolution from the TTDA
into near-RISC architectures provides a clue into what these flaws are. The rather abstract TTDA
decomposed dataflow graphs to a near-atomic instruction level. Thousands of tokens are created
in the course of even a simple program execution, because tokens can be formed and dispatched
before dependencies are resolved. [AB93] states that “these tokens represent data local to inactive
functions which are awaiting the return of values undergoing computation in other functions invoked
from within their bodies”. The execution of any token required an associative search across the space
of all tokens for the tokens that held the results that satisfied the current token’s data dependencies.
The multi-thousand element associative structure required to do this search is not implementable

even after twenty years of process scaling.

Another flaw of the early Dataflow machines is that every token represents a high-overhead
synchronization event. [lan88] points out that von Neumann architectures also perform a synchro-
nization event between each instruction, but the method of synchronization is very light-weight: IP
=IP + 1 or IP = branch target. This allows von Neumann architectures to grind through straight-
line code very quickly. Fortunately for the von Neumann crowd, most code written to date can be
straightened out sufficiently with either branch prediction or trace scheduling to get good perfor-
mance out of such a system. P-RISC and *T leveraged this strength of von Neumann architectures
somewhat by allowing a token to represent what are essentially an execution trace and a stack frame.
*T actually has a very similar single-node architecture to the ADAM: it divides a single node into
a synchronization coprocessor and a data processor. The synchronization processor is responsible
for scheduling threads and dealing with synchronization issues, while the data processor’s exclu-
sive job is to execute straight-line code efficiently. However, the similarity ends there, as the *T
architecture focuses primarily on latency hiding through rapid and efficient thread scheduling, start-
ing, and context switching. While latency hiding through multithreading is an important part of the
ADAM architecture, it is also very important to reduce latency by providing mechanisms for the
efficient migration of data and threads between processor nodes. The ADAM's overall organization
reflects this attention to migration mechanisms. Also, a careful examination of the implementation
strategy outlined in [PBB93] reveals a number of important differences (and similarities) between

the ADAM and *T. One significant difference is ADAM's use of a queue-based interface between
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threads, with implicit synchronization through empty/full bits, similar to the scheme used in the M-

Machine [FKD"95]. *T uses a register-based interface with a microthread cache to enable efficient
context switching, and explicit, program-level handling of messages that could not be injected into
the network. The use of self-synchronizing queues of an opaque depth in ADAM helps cushion

network congestion and scheduling hiccoughs.

2.3.2 Decoupled-Access/Execute

Decoupled-access/execute (DAE) machines are single-node processors with separate execute and
access engines. These engines are coupled with architecturally visible queues that are used to hide
memory access latencies. Code for these machines are typically broken down by hand or compiler
into an access and execute thread; latencies are hidden because the access thread, which handles
memory requests, can "slip” ahead of the execute thread. Relatively few machines have been built
that explicitly feature DAE. The architecture was first proposed in [Smi82b] and later implemented
as the Astronautics ZS-1 [SD\B7]. [MSAD90] characterizes the latency-hiding performance of
the ZS-1 in detail, and [MSAD91] compares the performance of the ZS-1 to the IBM RS/6000. A
comparison of DAE versus superscalar architectures can be found at [FNN93], and a comparison
of DAE versus VLIW architectures can be found at [LJ90]. Another proposed DAE architecture
is the WM Architecture [Wul92], and a novel twist on DAE architectures where the access unit is
actually co-located with the memory is proposed in [VG98]. The architecture described in this work
parallels many of the ideas in [VG98].

The basic message contained in all the previously cited papers is that by judiciously dividing
a processor into two spatially distributed processors, greater than 2x performance gains can be re-
alized. This super-linear speedup results from latency that was architecturally bypassed by either
allowing the memory subsystem to effectively slip ahead and prefetch data to the execution unit,
or by physically co-locating the access unit with the memory. DAE ideas can actually be applied
generically to any machine with a large amount of explicit parallelism by simply dividing every
program into two threads, an access thread and an execute thread. The advantage of explicit DAE
machines is that the synchronization between the access and execute threads is very fast because
they are coupled via hardware queues, as opposed to software emulated queues. Some conventional
out of order execution machines also provide a certain amount of implicit access/execute decou-
pling via deep, speculative store and load buffers. However, in general, conventional architectures

that emulate these queues in software pay a high price for synchronization overhead. Software im-
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plementations that use polling to check empty bits pay the overhead of polling plus any time lost
between the actual data availability event and the poll event. Interrupt-driven implementations are
also expensive because typical interrupt mechanisms require kernel intervention.

Another important message is that queues are like bypass capacitors for computer architectures.
Queues low-pass filter the uneven access patterns of high-performance code and help decouple the
demand side of a computation from the supply side of a computation. Like bypass capacitors, the
time constant of the queueéd,, the size of the queue) has to be sufficiently large to filter out the
average spike, but not so large as to reduce the available signal bandwidth and hamper important
tasks such as context switching. The overhead of the queue structure must also be small so that the
benefits of queuing can be realized.

Unfortunately, simple DAE machines as a whole suffer from a few problems. There are no
compilers that generate explicit access and execute code streams; most benchmarks and simulations
in the cited papers were with hand-coded access and execute loops. Also, the effectiveness of DAE is
guestionable on complicated loops and programs with complicated and/or dynamic dataflow graphs.
Simple DAE is targeted at hiding memory latencies, and not much else. However, the basic idea
of decoupling access and execute units is a powerful one; especially if the physical access and
execute units are allowed to be assigned dynamically to a single virtual control thread, as is the
case in ADAM. Creating these “virtual” DAE machines allows access and execute units to migrate
throughout the machine and optimize latency on a thread by thread basis. A sufficiently flexible
infrastructure would also allow several execute units to be chained together, thus providing a kind
of loop unrolling and a facility for streaming computations without any modification to the code.
Because this chaining is dynamic, such a machine could be upgraded to have more processors and
a greater performance would be realized without recompiling the code. This idea of a virtual DAE

architecture is an important part of the ADAM architecture.

2.3.3 Processor-In-Memory (PIM) and Chip Multi-Processors (CMP)

Recent advances in process technology have made it possible to integrate a sufficient amount of
SRAM on-chip to make a single-chip stand-alone processor node. Also, the availability of DRAM
embedded on the same die as a processor opens the door to even higher levels of memory integra-
tion [Corb] [Mac00] [Cora]. This integration of processors and memory on a single die is referred

to as Processor-In-Memory (PIM). The fact that the memory is included on the same die as the

processor implies a power and performance advantage due to the elimination of chip-chip wiring
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capacitances and wire run lengths. It also offers a performance advantage because more wires can
be run between the memory bank and the processor than in a discrete processor-memory solution.
As process technology continues to improve, it will be possible to put several processor cores plus
memory on a single silicon die. This style of implementation is known as a Chip Multi-Processor
(CMP). A paper that summarizes some of the key arguments for CMP architectures can be found
in [ONH™96]. Some architectures that have been proposed which take advantage of some combina-
tion of embedded memory technology and chip multiprocessor technology include RAW g83F

I-RAM [KPP197], Active Pages [OCS98], Decoupled Access DRAM [VG98], Terasys [GHI94],
SPACERAM [Mar00], and Hamal [Gro01].

The level of performance available to users of embedded DRAM is remarkable. Traditionally,
DRAM is thought of as the sluggish tanker of memory, while SRAM is the speed king. A recent
DRAM core introduced by MoSys (the so-called 1-T SRAM), available on the TSMC process,
has proven that DRAM has a place in high performance architectures [Cora]. The 1-T SRAM is
based on a DRAM technology, but has a refreshless interface like a SSRAM (synchronous SRAM).
The performance of this macro is also sufficiently high — 2-3 cycle access times at 450 MHz in a
0.13um process — to entirely eliminate the need for data caches in the processor design. Note that
the processor frequency targets for ADAM is on par with compiled “soft core” processor frequency
targets, which is typically a factor of 2-4 below the level of the full-custom processors developed
by Intel, AMD, and Compag. The ADAM is assumed to be implemented using a portable RTL
design flow, optimized for fast design cycles and portability to the latest process technology offered
by foundries. The reduced implementation time and the CMP architecture of the ADAM helps
compensate for the performance penalty of using a compiled design flow. Finally, because the 1-
T SRAM has the memory cell structure of DRAM, the density of these macros is similar to the
embedded DRAM macros offered in other processes (2.09 penMbit for a DRAM macro on
IBM’s Cu-11 process [Mac00] versus 1.9 miper Mbit for a MoSys macro on a TSMC 0.13n

logic process [Cora)).

The ADAM architecture leverages both the high level of logic integration available in future
process technology and the availability of off-the-shelf, fast, dense memories to create a distributed

massively parallel architecture with good single-threaded code performance.
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2.3.4 Cache Only Memory Architectures

While the architecture proposed in this thesis has no data caches, one could argue that the speed of
the memories used in the processor nodes qualifies them as program-managed caches. Hence, it is
important to look at the class of machines known as Cache Only Memory Architectures (COMA).
The most relevant machine in this class in the Data Diffusion Machine (DDM) [MSW93]. The
DDM relies on data migration through the implicit semantics of caches. Because this work is so

closely tied to data migration and its control, a thorough discussion of how ADAM relates to the

DDM is deferred until section 4.
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Chapter 3

Aries Decentralized Abstract Machine

While Newton is to have said (sarcastically, in truth, but that’s an-
other story) that he saw farther by standing on the shoulders of
giants, most of us squat on the kneecaps of pygmies. But that is
meant in the nicest possible way.

—Thomas H. Lee, ISSCC 2002 Panelist Statement

The Aries Decentralized Abstract Machine (ADAM) is an abstract parallel computer architecture
optimized for, among other things, fast data and thread migration. This chapter presents an overview
of the architecture, highlighting the salient features that enable the implementation of high perfor-
mance migration. A simple code example is presented first, to acquaint readers with basic ADAM
communication and memory abstractions. The example is followed by a more formal, in-depth

discussion of various features of the ADAM.

3.1 Introduction to ADAM by Code Example

ADAM has a fine-grained multithreaded programming model. Inter-thread communication and
memory access is accomplished via explicit gueue resources. Also, memory is abstract; pointers are
represented as capabilities with base and bound tags. Programmers cannot create capabilities; they

must request one from the machine viafdtl OCATEopcode.

3.1.1 Basics

A simple program example that illustrates the salient features of the architecture can be seen in

figure 3-2. This code illustrates procedure linkage, capability allocation, and memory mappings.

35



MOVEC 2, g0 ; initialize g0 with the number 2
MOVEC 1, ql

MOVEC 4, g1 ; initialize g1 with the numbers 1 and 4
ADD @qo, g1, g2

; at this point, g2 has 3, g0 has 2, q1 has 4
ADD g0, ql, @g2

; at this point, g0 is empty, ql1 is empty, and g2 has 6

Figure 3-1: Demonstration of the copy/clobb@& (odifier.

The basic format of assembly opcode®OR qa,gb,qc , whereOPis the operationga andgb

are the arguments, amgt is the result. Every operation may have zero, one or two arguments,
and one of the arguments may be a constant. There are also some important opcodes that do not
follow this format, such aMAPQhat will be discussed soon. Also note that every queue specifier
can be modified with a@(copy/clobber) modifier. Figure 3-1 demonstrates the operation a@the
modifier. On reads, a@specifies that the instruction should copy the value from an argument queue,
instead of dequeuing it. On writes, @specifies that the instruction should overwrite (“clobber”)

the newest value in a queue, if there is one, instead of enqueuing a value. If the destination queue is
empty, the@operator has no effect. Ti@operator is handy when dealing with temporaries that are
reused frequently; without it, any time a result is used more than once, the programmer or compiler

would have to include a special instruction to duplicate values.

3.1.2 Calling Convention

In ADAM, the calling convention is that every procedure is a new thread. Arguments and return
values are passed via queue mappings. The code in figure 3-2 demonstrates this calling convention.
The callermain , callstestStub by executing SPAWNC @2,testStub,q0 instruction. This
instruction starts a new thread with its program counter set to thetestStub  and returns the
new thread’s context ID im0. The argumeng2 is the spawn metrig this lets the programmer
control the placement of new threads. In this case, the spawn metric was initialized to 1, which
causes the new thread to be started on some node one network hop away.

After creating the new thread, the caller maps a queue into the callee’s queue space to initiate
argument passindvlapping a queueauses values written into the mapped queue to appear eventu-
ally in the map target. The storage location of data written into a mapped queue is the map target.

Also, communication via queue maps is push-only; one cannot read from a mapped queue. Hence,
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main:

MOVECC 1, g2 ; set spawn metric to 1
SPAWNC (@2, testStub, qO0 ; spawn remote thread
MAPQC g1, q0, @qO ; map to my child
PROCID q1 ; send my proclD to child
MOVE 20, g22 ; wait for return value from child
MML g40, g41 ; declare 940, g41 as load queues
MOVE @qg22, q40 ; initialize 940 wi/capability
MOVECL 0, g40 . retrieve data from offset 0
PRINTQ g41 ; print it (sim specific instruction)
HALT

testStub:
MOVE g0, q100 ; store caller in q100
MAPQC  ql, 20, @q100 ; my gl -> g20 of my caller
MOVECC 0, g2 . set allocate metric to 0
ALLOCATEC g2, 8, ql0 ; allocate 8-word local capability
MMS g30, g31 ; declare 930, 31 as store queues
MOVE @q10, g30 ; init q30 w/capability
MOVECL 0, g30 ; store data 10 at offset O
MOVECL 10, g31
MSYNC ; ensure that the store has committed
MOVE @q10, g1 ; send the capability to my caller
HALT

Figure 3-2: Simple code example demonstrating procedure linkage, thread spawning, memory allo-
cation, and memory access.

37



once a queue is mapped, it is write-only; a read from a mapped queue results in undefined behavior.
In this example, the new thread expects all of its argumentfinso the caller maps to the new
thread using the instructioMAPQC q1,g0,@q0. Note that theMAPQanstruction has unusual
semantics. The first two arguments are actually immediate constants; in other words, they are inter-
preted as simply queue numbers, and not as sources for operands. The firgagpecifies the

local queue to be mapped. The second vajle specifies the queue number of the map target. The
final argument@qQ specifies the queue from which to read the map target’s context ID. | chose
the first two values to be constant values because programmers or compilers typically know exactly
what the source and destination queue numbers of a mapping should be.

Now that the caller has mapped the argument queue to the callee, the caller first passes its
context ID to the callee. Upon receiving the caller’s context ID, the callee maps a return queue back
to the caller. In this example, the caller and callee agree by conventiog2f@as the return value
gueue. Figure 3-3 illustrates the state of the caller and callee after setting up the argument and return

queues.

3.1.3 Memory Allocation and Access

The next set of instructions in our code example demonstrate memory allocation and access. Mem-
ory allocation in ADAM is accomplished with th&LLOCATEnstruction, and memory access is
accomplished through queue mappings.

In this particular example, the instructicgkLLOCATEC g2,8,q10 is used to create a new
capability. g2 is an allocation metric similar to the spawn metric used bySRAWN®Gpcode. In
this caseq? is initialized to 0, so this instruction is requesting the allocation of local memory.

The next instructionMMS 30,931, declareg30 andqg31 to be store queues. The argu-
ments toMMSare immediate constants, similar to thi&APQGnstruction. Subsequent to théMS
instruction,g30 is a store addresgiueue, andy31 is a store dataqueue. Data can be stored to
memory using this pair of queue mappings by enqueuing address and data pairs into their respective
gueues. Before storing data using these queues, the store address queue must be initialized with a
store capability. This is accomplished by tM®©VE @qg10,q30nstruction; it copies the allocated
capability ing10 into the store address queg80 . Subsequent writes into the store address queue
should be constant offsets to the initial capability; the memory subsystem is responsible for adding
this offset and checking for bounds violations. Writing another capability into the store address

queue causes the store address queue to be re-initialized with the new capability.
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(stalled on empty q20)

main:
M@VECC 1, g2
SPAWNC @2, testStub, q0

simpocoio ops

testStub:
MOVE @0, q100

MAPQC g1, 20, @q100
ECC 0, q2

"argument" mapping
\

context:queue #

queue contents

main:g2 1
main:q0 testStub context ID
main:ql [
main:q20 (empty) <
(unallocated) (empty)
(unallocated) (empty)

context:queue #

queue contents

testStub:q0 (empty) <+
testStub:q100 main context ID
testStub:ql ®
testStub:q2 0
(unallocated) (empty)
(unallocated) (empty)
(unallocated) (empty)

"return" mapping

Figure 3-3: Thread states after thread spawn and procedure linkage.

39




In our code example, a single value, 10, is stored at offset 0. The theststub then
performs anMSYNQo ensure that the store has committed, and sends the memory capability to
the calling thread and halts. The callerain, then establishes load address and load data queues
using theMML 40,941 instruction.main then accesses the returned data capability by sending
a copy of the capability into the load address qued€). main then prints the return value from
memory and halts. ThHBRINTQinstruction is a convenience instruction only used in the simulator

implementation for debugging purposes. The final state of our machine at the end of our code

example run is illustrated in figure 3-4.

main:

context:queue #

queue contents

MOVECC 1, q2 main:g2 1
SPAWNC @2, testStub, g0 — Memory
main:q0 testStub context ID

MAPQC gL, q0, q0 na System

PROCID ql main:ql —

MOVE 20, g22 main:q20 capability to mem ¢

MML  g40, g41 ina40 .y load|address
MOVE @q22, q40 main:q hd >
MQVECL 0, g40 main:q41 < load|data
.a TQ g4l alloc'd

capability

testStub:
MOVE @0, q100
MAPQC g1, q20, @q100
MOVECC 0, g2

ALLOCATEC g2, 8, q10

MMS @30, g31
MOVE @q10, q30
MOVECL 0, q30
MOVECL 10, 31
MOVE @ql0, q1

context:queue #

queue contents

testStub:q0

(empty) —

testStub:q100

main context ID

testStub:ql

testStub:q2

0

testStub:ql10

capability to mem

testStub:q30

° storeladdress >

testStub:q31

store

data

»
L

10

MSYNC
[PEALT

Figure 3-4: Thread states after memory allocation and access.

3.2 Programming Model

This section fleshes out some of the basic architectural features of ADAM presented in the simple
code example. For a discussion of architectural features and implementation details not directly rel-
evant to migration, please see appendix B. Things discussed in appendix B include the instruction
formats, detailed breakdowns of the capability format bitfields, exception handling, and kernel/OS
interactions. For a comprehensive review of the opcodes provided in ADAM, please refer to ap-

pendix D.
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3.2.1 Threads

The fundamental unit of computation in ADAM is a thread. Threads are very lightweight under
ADAM, and they are opaque, monolithic memory structures. They could almost be called continua-
tions except that they carry an activation frame’s worth of data in addition to a program counter and
an environment pointer. Every thread’s state has a one-to-one mapping with a region of memory,
as seen before in the named state register file [ND91]. The address and bounds of this region of
memory is identified by a capability; this capability is referred to as a thread’text ID Thus, any

thread can be globally uniquely identified by its context ID, because the context ID is just a pointer
into memory. Also, the number of threads per processor is limited only by the amount of memory
available. The correlation of every thread state to a region of memory allows thread and data migra-
tion implementations to share the same basic mechanism. A summary of the state associated with a

single ADAM thread can be seen in figure 3-5.

64 bits 32 bits
TAGS

’ signature hash PC ‘

pareald
apIsal
doipdew
paddew

80 bits map target + VQN

| kernel capability | q0
ql
’ exception capability ‘ g2
Queue
File
| exception temps & args (4) UH q126
q127
’ status (read-only) ‘ —
’ mode (write-only) ‘ Individual Queue Details:
| forwarding capability | 80-bit entries
| ancestor capability |
— head data tail data
’ context ID (capability) ‘ (depth not specified)
machine-managed I:] user-managed
thread state thread state

Figure 3-5: Programming model of ADAM

In place of registers in a typical machine, ADAM supplies queues of an unspecified depth. The
output of any queue can be remapped onto the input of another queue in another thread context for

inter-thread communications. This technique is referred guasie mapping
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Arguments and return values are passed between threads via queue mappings; there is no stack
in ADAM. Also, communication to memory is implemented using queue mappings. Hence, all
visibility into and out of a thread occurs via a set of queue mappings. This idea is illustrated in
figure 3-6. The use of queue mappings simplifies an implementation of thread migration first by
isolating all thread state, including communication state, within a single contiguous region of mem-
ory, and second by enabling simple mechanisms for managing the forwarding of communications

concurrently with migration. These migration mechanisms will be described in chapter 4.

A\ 4

capability (also thread ID) }— front pad & OS info

processor state -
backing store

rest
of
machine

mappings and heap <
pointers «

constants

\ A 4

only path of visibilty
into thread

Figure 3-6: Structure of an ADAM thread

3.2.2 Queues and Queue Mappings

To a first approximation, the queues supplied by ADAM are of infinite depth. However, in a realistic
implementation, the performance of the queues diminishes as more data is shoveled into them.
Hence, while the programming abstraction allows programmers to store large amounts of data in
gueues, this should be avoided for performance reasons. If a programmer obeys this restriction,
the queues should perform comparably to a register in a standard RISC machine (see appendix C
for implementation details). Also, when the queues are used as a communication element between
streaming threads, flow control is accomplished by applying back-pressairer(queue stalling)
proportional to their fullness. This allows programmers to chain together streaming threads that
compute at different rates without having to deal with flow control explicitly.

Queue mapping is the recommended method for inter-thread communication. Data from any

given source is guaranteed to arrive in-order in the destination context’s queue; however, when

42



more than one sender is mapped to a single receiver, there is no guarantee as to the ordering of
the received values between the two senders. A node can request that the source ID of incom-
ing data be enqueued in a secondary queue in lock-step with the primary destination queue, so
that ambiguity created by such a situation can be resolved by user code. While a programmer can
communicate data between threads by passing around heap-allocated data structures, it is not rec-
ommended because ADAM’s memory model uses weak ordering [LW95], and makes no guarantees
on the relative ordering of memory requests between threads. Using heap-allocated data structures
for inter-thread communication can also be less efficient than direct queue mappings in the presence
of thread migration, because heap-allocated communication structures do not automatically migrate
with threads.

ADAM gueues can assume register semantics when necessary via a copy/clobber modifier, as

described in the code example at the beginning of this chapter.

3.2.3 Memory Model

The ADAM uses a virtually addressed capability-based memory model. As mentioned previously,
the capability format used in ADAM also encodes base and bound information in the pointer tags.
This technique has been seen before in [CKD94], and is refined by [BGKHO00]. Capabilities are
tagged pointers that the hardware recognizes and treats differently from regular data. In particular,
regular users cannot create capabilities on their own; they must request capabilities from the oper-
ating system or some other trusted supervisory mechanism. This feature helps make a system more
secure against malicious or broken code. In the case of ADAM, the capability format is augmented
with tag bits. These tag bits encode information about the capability, such as the read/write permis-
sions and the base/bound information. The base and bound tag information is particularly important
toward enabling the implementation of fast migration mechanisms. Given an ADAM capability, one
can deduce the exact region of data to copy from the base and bound tags; note that the base address
given to a user in a capability is allowed to be different from the absolute beginning address of the
capability. In addition, the tags include an “increment-only” bit. When this bit is set, users can only
reference offsets to the capability base that are positive integers, including zero. This allows the
system to hide information at the top of each capability from users, between the absolute capability
beginning and the user base address. This feature is used in my migration implementation to as-
sociate a remote data locater pointer with each capability. The function of the remote data locater

pointer is described in detail in chapter 4. For more information about the implementation of base
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and bounds encoding in ADAM, readers are referred to appendix B.

Memory is striped across the machine using an explicit node ID as part of the address. The
node ID field and address field can steal bits from each other depending upon the implementation
parameters. This kind of node location coding within the address has been seen before in the Cray
T3E [Sc096]. The actual translation of the virtual addresses and paging mechanisms are transparent
to the specification and implementation-specific. A summary of the capability format can be seen

in figure 3-7.

capability tag

tags: access rights, base/bounds processor 1D address

Figure 3-7: High-level breakdown of the ADAM capability format. Detailed bit-level breakdowns
of each field can be found in appendix B.

3.2.4 Interacting with Memory

As mentioned previously, there are no load or store instructions in the ADAM specification; memory
is an opaque object accessed only through queue mapping84NibendMMSpcodes are used to
define load and store queue pairs, respectiviglilLtakes an outgoing address queue and a return
data queue as argumentgMSIakes an outgoing address queue and an outgoing data queue as
arguments. The ordering of data in any single given load or store queue mapping within a thread
is guaranteed to be preserved, since address and data values are sent to the memory subsystem in
lock-step. However, the ordering between multiple sets of mappings is not guaranteed between
MSYNGnstructions. Hence, accessing a single piece of memory through multiple queue maps is
not recommended as it can result in nondeterministic behavior.

Locks and semaphores in memory can be implemented usingX@Hopcode. TheEXCH
opcode declares a set of three queues asxahange tuple One queue is used to specify the
exchange address, another queue is used as the source of outgoing exchange data, and the final
gueue is used to specify the return point for the exchanged data. This exchange is guaranteed by
hardware in the memory subsystem to be atomic. The timing of the exchange is not deterministic:
the actual exchange on the memory location happens whenever the exchange request arrives at the

destination memory location.
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When initializing a memory queue mapping, the first piece of data written inéaldresjueue
must be a capability or a memory access exception is thrown. Subsequent accesses to an address
gueue may pass more capabilities or any integer data type. When an integer data type is put into a
memory queue, it is assumed to be an offset of the most recent capability passed into the address
gqueue. Putting a packed integer into an address queue causes data to be returned for each of the
packed sub-values, starting with the least significant value and ending with the most significant
value.

A feature of the memory queue access form is that architects and implementers can extend the
ADAM specification by adding intelligence to the memory system. Capabilities and offsets are
thrown into a memory queue, and the memory system is free to do what it likes before returning
some data. Thus, the memory system can be augmented to be more than just a table of stored values;

it could be configured to perform computations or to automatically traverse data structures as well.
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Chapter 4

Migration Mechanism in a

Decentralized Computing Environment

Memory is like an orgasm. It’s a lot better if you don’t have to fake
it.

—Seymour Cray on virtual memory

4.1 Introduction

The idea of moving code and data around so that they are physically closer to each other is ap-
pealing in any computer system where communication latencies are high. Unfortunately, migration
introduces a large number of new problems. First and foremost, migration consumes computing re-
sources, and system architects must contend with the fact that any movement of data must be even-
tually amortized by the resulting reduction in communication latency. The overhead of a migration
mechanism includes not only the time to copy the data, but also the time required to negotiate with
the migration destination; the potential stalling of access to the data during the migration interval;
the time required to update any pointers into the migrated memory; and any collateral impact on
network and CPU utilization. This litany of performance pitfalls makes it very difficult to wedge an
effective migration mechanism into an existing architecture that was designed without any thought
toward the problem. Thus, even though data and thread migration seem to be good ideas in principle,
their implementation can be a difficult task.

The ADAM architecture and its corresponding implementation drastically reduce the overhead

required for data and thread migration when compared to traditional architectures. ADAM’s data
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and thread migration mechanisms are basically identical because of its programming model and
implementation: threads are just data structures that have a special meaning to the thread sched-
uler. Inter-thread and memory communication is explicitty managed so implementing forwarding
pointers and pointer updates can be done through an efficient and straightforward scheme called
“temporally bidirectional pointers”. Finally, the use of a capability-based memory system with tag-
encoded explicit base and bounds on memory regions simplifies the bookkeeping on which pieces
of memory to move. It now becomes reasonable to discuss a whole new set of issues related to the

on-line scheduling of data and thread migration because of this low-overhead migration mechanism.

4.2 Background

This background section surveys the mechanisms and algorithms of previous work in the area of
data and thread migration. This section is divided into architecture, mechanisms, and algorithms

sections.

4.2.1 Architectures that Directly Address Migration

There are a few architectures that directly address data or thread migration. A class of architectures
known as COMA (Cache Only Memory Architecture) must grapple head-on with the issue of data
migration as a cache line placement problem. NUMA (Non-Uniform Memory Access) machines
also introduce the idea of spatial awareness to an architecture, but the issue of data migration is
typically encapsulated by the cache coherence protocol. Thread migration mechanisms, on the other
hand, typically do not manifest themselves as architectural features, but as run-time or compile-time
supported features of otherwise conventional parallel architectures. Therefore, in the literature,
thread migration mechanisms typically fall under the genre of work-stealing and load-balancing
mechanisms and are treated that way in the next section.

There are relatively few COMAs in the literature. The most notable COMAs are Bristol's Data
Diffusion Machine (DDM) [MSW93], the Kendall Square Research KSR-1 [ea92], and the UIUC
lllinois Aggressive COMA (I-ACOMA) [TP96]. All three COMAs listed here rely upon a directory-
based cache coherence scheme. The KSR-1 and later revisions of the DDM employ a scalable
hierarchical directory scheme, whereas the published literature on the I-ACOMA does not specify
the details of the directory scheme; in fact, the I-ACOMA literature does not focus much on the data

migration aspects of a COMA, but more on latency hiding schemes through the use of simultaneous
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multithreading and its implementation using embedded memory process technology. As mentioned
previously, COMAs deal directly with the data migration issue as a cache line placement issue.
In the DDM, a cluster of processors share an “attraction memory” (AM) where requested data is
stored; frequently requested data naturally migrates and clusters around the processors that require
the data. The location of data is tracked using a hierarchical directory lookup based on point-
to-point wiring, as opposed to the KSR-1 which uses a series of interlocking rings to resolve the
location of data. While the point-to-point hierarchical lookup addresses some of the scalability
issues of the KSR-1 interlocking rings, it still relies on a directory lookup architecture. This means
that either large cache lines or a high memory overhead must be paid for storing the presence bit
vectors in the cache memories. While there are mechanisms such as sparse directories [GWM90]
or limited pointers [ASHH88] that can reduce this overhead, these mechanisms introduce more
complexity into the system. The ADAM architecture, on the other hand, presents programmers
with a virtual shared memory space and no caches. Coherence in ADAM is trivial, as there is
only one location for any mutable piece of memory; hence no complexity or performance is lost
to a directory cache scheme. The performance loss of not caching memory locally is gained back
through three methods. The first is a simple network protocol and architecture that enables low
latency remote memory requests. The second is aggressive multithreading to hide fetch latencies, in
the style of HEP. [Smi82a] The third is the use of both data and thread migration mechanisms that

supplant the locality of data nominally provided by directory caching schemes.

NUMA architectures make the reality of non uniform memory access an explicit architectural
assumption, and typically provide automatic mechanisms to hide the latency of remote memory ac-
cesses. In the case of the Stanford DASH [CT®] and the SGI Origin 2000, a directory-based
cache coherence protocol is employed to help enhance data locality and re-use. The amount of
data that can be “migrated” locally in a ccNUMA architecture is limited by the size of the cache.
Unlike the DDM COMA, the allocation, placement, and coarse migration of data is explicitly man-
aged mostly by software; still, fine-grained data migration is provided by the caching mechanism.
Because of the large overheads incurred by software page migration management, these ccNUMA
machines fall into the class of coarse-grained data migration machines. On these machines, it is im-
practical to consider a migration system where data is dynamically and frequently moved around to
reduce latency and balance loads. For example, the SGI Origin 2000 provides hardware-supported
page migration through two mechanisms: per-page reference counters for profiling, and a direct

memory access (DMA) style block transfer mechanism to accelerate page copying. The time re-
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quired to copy a page of memory is under; 39 however, the time required to invalidate and update
the TLBs is 10Qus or more. [LL97] While a technique called “directory poisoning” is provided that
allows the TLB update to overlap with the page copy process, the performance of page copying is

still less than desired.

4.2.2 Soft Migration Mechanisms

A number of innovative, high performance mechanisms have been proposed for the efficient migra-
tion of threads for load balancing within more conventional architectures.

TAM [CSS191] (also referred to as Active Threads in [WGQH98]) and its follow-on, Ac-
tive Messages [vVCGS92], proposes an efficient mechanism for interprocessor communication us-
ing continuations. It significantly differentiates itself from the J-Machine [NWD93], Monsoon and
*T [PBB93], all message-driven machines, by the fact that Active Messages is a purely software-
approach to achieving high performance. [vCGS92] claims that pure message-driven hardware
implementations are crippled by the limited number of registers available per hardware context,
whereas a software emulated implementation could leverage the rich architecture of a conventional
processor. It also differentiates itself from other message passing systems by operating entirely in
user space, so as to cut out kernel overheads, and by allowing concurrent message transmission
and computation through non-blocking operations. Active Messages demonstrated a performance
of 11 s (21 instructions) to send a message ang:4%34 instructions) to receive a message on
an nCUBE/2. On a CM-5, performance is 1u6 to send a single-packet (address + 16 message
bytes) and 1.7s for receiver dispatch. Significantly, Active Messages is not a thread migration
mechanism; rather, it is a method for compile-time integration of fast message passing mechanisms,
similar in nature to Remote Procedure Calls (RPCs). Thus, Active Messages does not address how
to deal with spatially nonuniform memory or situations where it is difficult to statically analyze the
optimal pattern of thread creation and messaging.

Computation Migration is a term coined by [HWW93]. Computation migration is similar to
thread migration, but lighter in weight (but not as light weight as TAM threads). This paper goes
into depth about the difference between RPC, data migration and computation migration. A proto-
type system based on PROTEUS (an object oriented language) with explicit programmer annotation
for migration opportunity points was used to evaluate the viability of computation migration. The
implementation was tested on a counting network and a b-tree benchmark. The performance of hard-

ware supported Computation Migration is favorable when compared to hardware shared memory
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and hardware supported RPC. Computation Migration is particularly good under high contention
situations. Perhaps the most interesting contribution of [HWW93] with respect to this work is a
detailed breakdown of where time is spent in the migration protocol. Of the 651 cycles required
to migrate computation, 74% is consumed by “message overheag'moving memory around,
scheduling, marshaling data, creating threads, and dealing with procedure linkages; only 3% is
consumed in network transit and the remaining 23% is consumed by what appears to be user code
annotations. User code annotations are required under this scheme as migration is explicitly man-
aged by the user. Note that Active Threads [WGQH98], a slower migration scheme, is used as the
comparison point for my work over Computation Migration because these static annotations restrict
the utility and concurrency benefits of Computation Migration. Even so, my thread migration mech-
anism performs about an order of magnitude faster, cycle-for-cycle, than the Computation Migration
scheme. [Hsi95] describes an extension to the work where dynamic migration is implemented using
a system called MCRL. Migration decisions are based on a pair of simple heuristics based on the
frequency of reads and writes. Benchmarks run on the MIT Alewife system [ZBCindicate that
computation migration can be used in combination with data migration in situations where shared
memory writes are common to improve performance. ADAM expands upon this work by creating

a hardware mechanism for lowering the overhead of thread and data migration and thus enabling

efficient fine-grained migration.

Active Threads [WGQH98] is a paper that describes a thread migration mechanism that em-
ploys a user-space threading scheme similar in spirit to Cilk [Joe96], Filaments [LFA96], and Mul-
tipol [WCD195]. Active Threads stripe processor node addresses across a large virtual memory
space to avoid having to update thread pointers upon thread migration. Without special hardware
support, Active Threads achieves a /1§ one-way latency for a 5 word message. A bulk transfer
of 1 kbyte takes 56Qus, constrained by the host I/O bandwidth. A thread with a null stack can
be migrated in 15Qis; on a Sparc v8 architecture processor using gcc 2.7.1, a null thread stack
is 112 bytes. A 2 kbyte stack takes 1.1 ms to migrate. These tests were run on a cluster of 50
MHz Sparcstation 10s with Myrinet. The paper compares this thread migration mechanism against
schemes such as Ariadne, Millipede, and®Mese other schemes have a performance on the order
of 10 ms for basic migration operations. Finabyper-linearspeedup is demonstrated for locality-
guided migration on a simple multithreadgdep application searching across a distributed disk
array. Average thread lifetimes in this benchmark are on the order of 5-10 ms. The ADAM architec-

ture adopts Active Thread’s use of a nhode-striped address space but also enhances performance by
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providing a hardware mechanism to accelerate migration and by providing temporal bi-directional
pointers to perform lazy pointer updates.

DEMOS/MP [PM83] is an operating system that implements an efficient thread migration mech-
anism. The thread migration mechanism described in DEMOS/MP is very similar to that used in
ADAM, but implemented entirely in software. DEMOS/MP processes consist of program state,
link tables, message queues and “other state” (presumably heap state). Inter-process communica-
tion occurs through OS allocated and administered links that are recorded in the link tables. This
use of explicitly managed inter-process communication links enables DEMOS/MP'’s efficient pro-
cess migration mechanism. When a process wishes to migrate, it is halted, space is allocated on
the remote node, and the process is moved. Messages accumulated during migration are forwarded
on to the new process location, and there is a mechanism for updating sender link tables to re-
flect the new process location. There is little mention of performance and a dearth of comparison
benchmarks in [PM83], but the paper does mention that a null thread—one with no program or data
information—has a size of 850 bytes total. The paper also mentions that in non-trivial processes,
the size of the data and program information regions are much larger than the size of a null thread.
Thus, one might safely assume that the overhead of migration is fairly high in DEMOS/MP, as its
processes are roughly equivalent in structure to those found on modern UNIX systems. The ADAM
architecture improves on the DEMOS/MP migration mechanism by using a lightweight thread rep-
resentation that is faster to move, and by providing an architecture that enables hardware support for
interprocess communication mechanisms. Thread migration under ADAM also does not require the
movement of the heap state or traversing OS-based memory allocation tables. ADAM'’s architecture

and migration mechanism also enables data migration in addition to thread migration.

4.2.3 Programming Environments and On-Line Migration Algorithms

A hardware mechanism’s design is incomplete without thought for the programming environment
or algorithms required to harness the power of the mechanism.

Emerald [JLHB88] is the seminal work in object migration systems. The only other works cited
by this work are the distributed Smalltalk implementation, Argus, and Eden; one might also count
Hydra and Clouds (object-based operating systems) as previous work. Emerald is a system design,
and embodies a language and an implementation. The language has a type system that allows the
programmer to give hints to the compiler. It also provides for migration, allocation, and affinity hints

in the language. Emerald is also garbage collected. The language uses a global unique name space.
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Objects may have processes attached to them, or they may be direct data; the decision to attach
a process to an object is made by the compiler. Emerald has a strong focus on maintaining good
local-invocation performance despite providing the ability to migrate objects. Forwarding pointers
with timestamps are used as the method for migrating objects quickly without having to drag the
universe along with a moving object. The decision of what parts of an object to move is made by the
runtime and compiler; small pieces of data get moved at migration time; larger pieces require more
thought. Emerald also provides a global object lookup facility. One problem with Emerald is the
handling of processor registers: an incoherency can result in processor register state due to the way
activation records are moved. In the paper, Emerald was demonstrated to have good performance
over a non-migrating implementation of a distributed mail-handling application. Finally, 