Archive for the ‘Ponderings’ Category

On Overcoming Pain

Thursday, December 6th, 2018

Breaking my knee this year was a difficult experience, but I did learn a lot from it. I now know more than I ever wanted to know about the anatomy of my knee and how the muscles work together to create the miracle of bipedal locomotion, and more importantly, I now know more about pain.

Pain is one of those things that’s very real to the person experiencing it, and a person’s perception of pain changes every time they experience a higher degree and duration of pain. Breaking my knee was an interesting mix of pain. It wasn’t the most intense pain I had ever felt, but it was certainly the most profound. Up until now, my life had been thankfully pain-free. The combination of physical pain, the sheer duration of the pain (especially post-surgery), and the corresponding intellectual anguish that comes from the realization that my life has changed for the worse in irreversible ways made this one of the most traumatizing experiences of my life. Despite how massive the experience was to me, I’m also aware that my experience is relatively minor compared to the pains that others suffer. This sobering realization gives me a heightened empathy for others experiencing great pain, or even modest amounts of pain on a regular basis. Breaking a knee is nothing compared to having cancer or a terminally degenerative disease like Alzheimer’s: at least in my case, there is hope of recovery, and that hope helped keep me going. However, a feeling of heightened empathy for those who suffer has been an important and positive outcome from my experience, and sharing my experiences in this essay is both therapeutic for me and hopefully insightful for others who have not had similarly painful life experiences.

I broke my knee on an average Saturday morning. I was wearing my paddling gear, walking to a taxi stand with my partner, heading for a paddle around the islands south of Singapore. At the time, my right knee was recovering from a partial tear of the quadriceps tendon; I had gone through about six weeks of immobilization and was starting physical therapy to rebuild the knee. Unfortunately that morning, one of the hawker stalls that line the alley to the taxis had washed its floor, causing a very slick soup of animal grease and soapy water to flood into the alley. I slipped on the puddle, and in the process of trying to prevent my fall, my body fully tore the quadriceps tendon while avulsing the patella – in other words, my thigh had activated very quickly to catch my fall, but my knee wasn’t up for it, and instead of bearing the load, the knee broke, and the tissue that connected my quads muscle to my knee also tore.

It’s well documented that trauma imprints itself vividly onto the brain, and I am no exception. I remember the peanut butter sandwich I had in my hand. The hat I was wearing. The shape and color of the puddle I slipped on. The loud “pop” of the knee breaking. The writhing on the floor for several minutes, crying out in pain. The gentlemen who offered to call an ambulance. The feeling of anguish – after six weeks in therapy for the partial tear, now months more of therapy to fix this, if fixable at all. I was looking forward to rebuilding my cardiovascular health, but that plan was definitely off. Then the mental computations about how much travel I’m going to have to cancel, the engagements and opportunities I will miss, the work I will fall behind upon. Not being able to run again. Not being able to make love quite the same way again. The flight of stairs leading to my front door…and finally, my partner, who was there for me, holding my hand, weeping by my side. She has been so incredibly supportive through the whole process, I owe my good health today to her. To this day, my pulse still rises when I walk through the same alley to the taxi. But I do it, because I know I have to face my fears to get over the trauma. My partner is almost always there with me when I walk through that particular alley, and her hand in mine gives me the strength I lack to face that fear. Thank you.

Back to the aspect of pain. Breaking the knee is an acute form of pain. In other words, it happens quickly, and the intensity of the pain drops fairly quickly. The next few days are a blur – initially, the diagnosis is just a broken kneecap, but an MRI revealed I had also torn the tendon. This is highly unusual; usually a chain fails at one link, and this is like two links of a chain failing simultaneously. The double-break complicates the surgery – now I’m visiting surgeons, battling with the insurance company, waiting through a three-day holiday weekend, with the knowledge that I have only a week or two before the tendon pulls back and becomes inoperable. I had previously written about my surgical experience, but here I will recap and reframe some of my experiences on coping with pain.

Pain is a very real thing to the person experiencing it. Those who haven’t felt a similar level of pain to the person suffering from pain can have trouble empathizing. In fact, there was no blood or visible damage to my body when I broke my knee – one could have also possibly concluded I was making it all up. After all, the experience is entirely within my own reality, and not those of the observers. However, I found out that during surgery I was injected with Fentanyl, a potent opioid pain killer, in addition to Propofol, an anesthetic. I asked a surgeon friend of mine why they needed to put opioids in me even though I was unconscious. Apparently, even if am unconscious, the body has autonomous physiological responses to pain, such as increased bleeding, which can complicate surgery, hence the application of Fentanyl. Fentanyl is fast-acting, and wears off quickly – an effect I experienced first-hand. Upon coming out of the operation room, I felt surprisingly good. One might almost say amazing. I shouldn’t have, but that’s how powerful Fentanyl is. I had a six-inch incision cut into me and my kneecap had two holes drilled through it and sutures woven into my quads, and I still felt amazing.

Until about ten minutes later, when the Fentanyl wore out. All of a sudden I’m a mess – I start shivering uncontrollably, I’m feeling enormous amounts of pain coming from my knee; the world goes hazy. I mistake the nurse for my partner. I’m muttering incoherently. Finally, they get me transferred to the recovery bed, and they give me an oral mix of oxycodone and nalaxone. My experience with oxycodone gives me a new appreciation of the lyrics to Pink Floyd’s “Comfortably Numb”:

There is no pain, you are receding
A distant ship smoke on the horizon
You are only coming through in waves
Your lips move but I can’t hear what you’re saying

That’s basically what oxycodone does. Post-op surgical pain is an oppressive cage of spikes wrapping your entire field of view, every where you look is pain…as the oxycodone kicks in, you can still see the spikey cage, but it recedes until it’s a distant ship smoke on the horizon. You can now objectify the pain, almost laugh at it. Everything feels okay, I gently drift to sleep…

And then two hours later, the nalaxone kicks in. Nalaxone is an anti-opioid drug, which is digested more slowly than the oxycodone. The hospital mixes it in to prevent addiction, and that’s very smart of them. I’ve charted portions of my mental physiology throughout my life, and that “feeling okay” sensation is pretty compelling – as reality starts to return, your first might be “Wait! I’m not ready for everything to not be okay! Bring it back!”. It’s not euphoric or fun, but the sensation is addictive – who wouldn’t want everything to be okay, especially when things are decidedly not okay? Nalaxone turns that okay feeling into something more akin to a bad hangover. The pain is no longer a distant ship smoke on the horizon, it’s more something sitting in the same room with you staring you down, but with a solid glass barrier between you and it. Pain no longer consumes your entire reality, but it’s still your bedfellow. So my last memory of the drug isn’t a very fond one, and as a result I don’t have as much of an urge to take more of it.

After about a day and a half in the hospital, I was sent home with another, weaker opioid-based drug called Ultracet, which derives most of its potency from Tramadol. The mechanism is a bit more complicated and my genetic makeup made dosing a bit trickier, so I made a conscious effort to take the drug with discipline to avoid addiction. I definitely needed the pain killers – even the slightest motion of my right leg would result in excruciating pain; I would sometimes wake up at night howling because a dream caused me to twitch my quads muscle. The surgeon had woven sutures into my quads to hold my muscle to the kneecap as the tendon healed, and my quads were decidedly not okay with that. Fortunately, the principle effect of Ultracet, at least for me, is to make me dizzy, sleepy, and pee a lot, so basically I slept off the pain; initially, I was sleeping about 16 hours a day modulo pee breaks.

In about 2-3 days, I was slightly more functional. I was able to at least move to my desk and work for a couple hours a day, and during those hours of consciousness I challenged myself to go as long as I could without taking another dose of Ultracet. This went on for about two weeks, gradually extending my waking hours and taking Ultracet only at night to aid sleep, until I could sleep at night without the assistance of the opioids, at which point I made the pills inconvenient to access, but still available should the pain flare up. One of the most unexpected things I learned in this process is how tiring managing chronic pain can be. Although I had no reason to be so tired – I was getting plenty of sleep, and doing minimal physical activity (maybe just 15-30 minutes of a seated cardio workout every day), I would be exhausted because ignoring chronic pain takes mental effort. It’s a bit like how anyone can lift a couple pounds easily, but if you had to hold up a two-pound weight for hours on end, your arm would get tired after a while.

Finally, after bit over forty years, I now understand why some women on their period take naps. A period is something completely outside of my personal physical experience, yet every partner I’ve loved has had to struggle with it once a month. I’d sometimes ask them to try and explain to me the sensation, so I could develop more empathy toward their experience and thereby be more supportive. However, none of them told me was how exhausting it is to cope with chronic pain, even with the support of mild painkillers. I knew they would sometimes become tired and need a nap, but I had always assumed it was more a metabolic phenomenon related to the energetic expense of supporting the flow of menses. But even without a flow of blood from my knee, just coping with a modest amount of continuous pain for hours a day is simply exhausting. It’s something as a male I couldn’t appreciate until I had gone through this healing process, and I’m thankful now that I have a more intuitive understanding of what roughly half of humanity experiences once a month.

Another thing I learned was that the healing process is fairly indiscriminate. Basically, in response to the trauma, a number of growth and healing factors were recruited to the right knee. This caused everything in the region to grow (including the toe nails and skin around my foot and ankle) and scar over, not just the spots that were broken. My tendon, instead of being a separate tissue that could move freely, had bonded to the tissue around it, meaning immediately after my bone had healed, I couldn’t flex my knee at all. It took months of physiotherapy, massaging, and stretching to break up the tissue to the point where I could move my knee again, and then months more to try and align the new tissue into a functional state. As it was explained to me, I had basically a ball of randomly oriented tissue in the scarring zone, but for the tendons to be strong and flexible, the tissue needs to be stretched and stressed so that its constituent cells can gain the correct orientation.

Which lead to another interesting problem – I now have a knee that is materially different in construction to the knee I had before. Forty plus years of instinct and intuition has to be trained out of me, and on top of that, weeks of a strong mental association of excruciating pain with the activation of certain muscle groups. It makes sense that the body would have an instinct to avoid doing things that cause pain. However, in this case, that response lead to an imbalance in the development of my muscles during recovery. The quads is not just one muscle, it’s four muscles – hence the “quad” in “quadriceps” – and my inner quad felt disproportionately more pain than the outer quad. So during recovery, my outer quad developed very quickly, as my brain had automatically biased my walking gait to rely upon the outer quad. Unfortunately, this leads to a situation where the kneecap is no longer gliding smoothly over the middle groove of the knee; with every step, the kneecap is grinding into the cartilage underneath it, slowly wearing it away. Although it was painless, I could feel a grinding, sometimes snapping sensation in the knee, so I asked my physiotherapist about it. Fortunately, my physiotherapist was able to diagnose the problem and recommend a set of massages and exercises that would first tire out the outer quad and then strengthen the inner quad. After about a month of daily effort I was able to develop the inner quad and my kneecap came back into alignment, moving smoothly with every step.

Fine-tuning the physical imbalances of my body is clockwork compared to the process of overcoming my mental issues. The memory of the trauma plus now incorrect reflexes makes it difficult for me to do some everyday tasks, such as going down stairs and jogging. I no longer have an intuitive sense of where my leg is positioned – lay me on my belly and ask me to move both legs to forty-five degrees, my left leg will go to exactly the right location, and my right leg will be off by a few degrees. Ask me to balance on my right leg, and I’m likely to teeter and fall. Ask me to hop on one foot, and I’m unable to control my landing despite having the strength to execute the hop.

The most frustrating part about this is that continuous exercise doesn’t lead to lasting improvement. The typical pattern is on my first exercise, I’m unstable or weak, but as my brain analyzes the situation it can actively compensate so that by my second or third exercise in a series, I’m appearing functional and balanced. However, once I’m no longer actively focusing to correct for my imbalances, the weaknesses come right back. This mental relapse can happen in a matter of minutes. Thus, many of my colleagues have asked if I’m doing alright when they see me first going down a flight of stairs – the first few steps I’m hobbling as my reflexes take me through the wrong motions, but by the time I reach the bottom I’m looking normal as my brain has finally compensated for the new offsets in my knee.

It’s unclear how long it will be until I’m able to re-train my brain and overcome the mental issues associated with a major injury. I still feel a mild sense of panic when I’m confronted with a wet floor, and it’s a daily struggle to stretch, strengthen, and balance my recovering leg. However, I’m very grateful for the love and support of my partner who has literally been there ever step of the way with me; from holding my hand while I laid on the floor in pain, to staying overnight in the hospital, to weekly physiotherapy sessions, to nightly exercises, she’s been by my side to help me, to encourage me, and to discipline me. Her effort has paid off – to date my body has exceeded the expectations of both the surgeon and the physiotherapist. However, the final boss level is in between my ears, in a space where she can’t be my protector and champion. Over the coming months and years it’ll be up to me to grow past my memories of pain, overcome my mental issues and hopefully regain a more natural range of behaviors.

Although profound pain only comes through tragic experiences, it’s helped me understand myself and other humans in ways I previously could not have imagined. While I don’t wish such experiences on anyone, if you find yourself in an unfortunate situation, my main advice is to pay attention and learn as much as you can from it. Empathy is built on understanding, and by chronicling my experiences coping with pain, it helps with my healing while hopefully promoting greater empathy by enabling others to gain insight into what profound pain is like, without having to go through it themselves.


My right knee, 7-months post-op. Right thigh is much smaller than the left. Still a long way to go…

You Can’t Opt Out of the Patent System. That’s Why Patent Pandas Was Created!

Friday, November 30th, 2018

A prevailing notion among open source developers is that “patents are bad for open source”, which means they can be safely ignored by everyone without consequence. Unfortunately, there is no way to opt-out of patents. Even if an entire community has agreed to share ideas and not patent them, there is nothing in practice that stops a troll from outside the community cherry-picking ideas and attempting to patent them. It turns out that patent examiners spend about 12 hours on average to review a patent, which is only enough time to search the existing patent database for prior art. That’s right — they don’t check github, academic journals, or even do a simple Google search for key words.

Once a patent has been granted, even with extensive evidence of prior art, it is an expensive process to challenge it. The asymmetry of the cost to file a patent — around $300 — versus the cost to challenge an improperly granted patent — around $15,000-$20,000 — creates an opportunity for trolls to patent-spam innovative open source ideas, and even if only a fraction of the patent-spam is granted, it’s still profitable to shake down communities for multiple individual settlements that are each somewhat less than the cost to challenge the patent.

Even though in practice open source developers are “in the right” that the publication and sharing of ideas creates prior art, in practice the fact that the community routinely shuns patents means our increasingly valuable ideas are only becoming more vulnerable to trolling. Many efforts have been launched to create prior art archives, but unfortunately, examiners are not required to search them, so in practice these archives offer little to no protection against patent spamming.

The co-founder of Chibitronics, Jie Qi, was a victim of not one but two instances of patent-spam on her circuit sticker invention. In one case, a crowdfunding backer patented her idea, and in another, a large company (Google) attempted to patent her idea after encountering it in a job interview. In response to this, Jie spent a couple years studying patent law and working with law clinics to understand her rights. She’s started a website, Patent Pandas, to share her findings and create a resource for other small-time and open source innovators who are in similar dilemmas.

As Jie’s experience demonstrates, you can’t opt-out of patents. Simply being open is unfortunately not good enough to prevent trolls from patent-spamming your inventions, and copyright licenses like BSD are well, copyright licenses, so they aren’t much help when it comes to patents: copyrights protect the expression of ideas, not the ideas themselves. Only patents can protect functional concepts.

Learn more about patents, your rights, and what you can do about them in a friendly, approachable manner by visiting Patent Pandas!

Tariffs in a Nutshell

Wednesday, July 18th, 2018

I was asked to distill a previous post about tariffs into something more accessible to the general public. The resulting article ended up being run on CNN Digital as an opinion piece:

In retaliation for unfair trade practices and the theft of American innovations and ideas, the US Trade Representative’s office is imposing a 25% tariff on a broad range of goods imported from China.

But these tariffs won’t help American workers. Instead, they will encourage American companies to push ideas and production overseas by raising the cost of raw materials without penalizing the import of finished goods.
[…]
Imagine a bakery located in the US. It uses imported flour, sugar and cacao to make delectable cakes based on a closely-guarded secret family recipe handed down for generations, and it employs dozens of bakers to do this. Now suppose a bakery in China has tried to copy the recipe…

The article uses a bakery as an analogy to explain the trade war situation, as well as thinking through why trade deficits are OK through the notion that buying a T-shirt at a store creates a “trade deficit” between you and the store, but in the end that trade deficit is actually quite helpful to you. You can read the full article on CNN Digital.

I had also prepared a short infographic to accompany the article, which wasn’t picked up by CNN, but you can enjoy it here.

New US Tariffs are Anti-Maker and Will Encourage Offshoring

Tuesday, June 19th, 2018

The new 25% tariffs announced by the USTR, set to go into effect on July 6th, are decidedly anti-Maker and ironically pro-offshoring. I’ve examined the tariff lists (List 1 and List 2), and it taxes the import of basic components, tools and sub-assemblies, while giving fully assembled goods a free pass. The USTR’s press release is careful to mention that the tariffs “do not include goods commonly purchased by American consumers such as cellular telephones or televisions.”

Think about it – big companies with the resources to organize thousands of overseas workers making TVs and cell phones will have their outsourced supply chains protected, but small companies that still assemble valuable goods from basic parts inside the US are about to see significant cost increases. Worse yet educators, already forced to work with a shoe-string budget, are going to return from their summer recess to find that basic parts, tools and components for use in the classroom are now significantly more expensive.


Above: The Adafruit MetroX Classic Kit is representative of a typical electronics education kit. Items marked with an “X” in the above image are potentially impacted by the new USTR tariffs.

New Tariffs Reward Offshoring, Encourage IP Flight

Some of the most compelling jobs to bring back to the US are the so-called “last screw” system integration operations. These often involve the complex and precise process of integrating simple sub-assemblies into high-value goods such as 3D printers or cell phones. Quality control and IP protection are paramount. I often advise startups to consider putting their system integration operations in the US because difficult-to-protect intellectual property, such as firmware, never has to be exported if the firmware upload operation happens in the US. The ability to leverage China for low-value subassemblies opens more headroom to create high-value jobs in the US, improving the overall competitiveness of American companies.

Unfortunately, the structure of the new tariffs are exactly the opposite of what you would expect to bring those jobs back to the US. Stiff new taxes on simple components, sub-assemblies, and tools like soldering irons contrasted against a lack of taxation on finished goods pushes business owners to send these “last screw” operation overseas. Basically, with these new tariffs the more value-add sent outside the borders of the US, the more profitable a business will be. Not even concerns over IP security could overcome a 25% increase in base costs and keep operations in the US.

It seems the intention of the new tariff structure was to minimize the immediate pain that voters would feel in the upcoming mid-terms by waiving taxes on finished goods. Unfortunately, the reality is it gives small businesses that were once considering setting up shop in the US a solid reason to look off-shore, while rewarding large corporations for heavy investments in overseas operations.

New Tariffs Hurt Educators and Makers

Learning how to blink a light is the de-facto introduction to electronics. This project is often done with the help of a circuit board, such as a Microbit or Chibi Chip, and a type of light known as an LED. Unfortunately, both of those items – simple circuit boards and LEDs – are about to get 25% more expensive with the new tariffs, along with other Maker and educator staples such as capacitors, resistors, soldering irons, and oscilloscopes. The impact of this cost hike will be felt throughout the industry, but most sharply by educators, especially those serving under-funded school districts.


Above: Learning to blink a light is the de-facto introduction to electronics, and it typically involves a circuit board and an LED, like those pictured above.

Somewhere on the Pacific Ocean right now floats a container of goods for ed-tech startup Chibitronics. The goods are slated primarily for educators and Makers that are stocking up for the fall semester. It will arrive in the US the second week of July, and will likely be greeted by a heavy import tax. I know this because I’m directly involved in the startup’s operations. Chibitronics’ core mission is to serve the educator market, and as part of that we routinely offered deep discounts on bulk products for educators and school systems. Now, thanks to the new tariffs on the basic components that educators rely upon to teach electronics, we are less able to fulfill our mission.

A 25% jump in base costs forces us to choose between immediate price increases or cutting the salaries of our American employees who support the educators. These new tariffs are a tax on America’s future – it deprives some of the most vulnerable groups of access to technology education, making future American workers less competitive on the global stage.


Above: Educator-oriented learning kits like the Chibitronics “Love to Code” are slated for price increases this fall due to the new tariffs.

Protectionism is Bad for Technological Leadership

Recently, I was sent photos by Hernandi Krammes of a network card that was manufactured in Brazil around 1992. One of the most striking features of the card was how retro it looked – straight out of the 80’s, a full decade behind its time. This is a result of Brazil’s policy of protectionist tariffs on the import of high-tech components. While stiff tariffs on the import of microchips drove investment in local chip companies, trade barriers meant the local companies didn’t have to be as competitive. With less incentive to re-invest or upgrade, local technology fell behind the curve, leading ultimately to anachronisms like the Brazilian Ethernet card pictured below.


Above: this Brazilian network card from 1992 features design techniques from the early 80’s. It is large and clunky compared to contemporaneous cards.

Significantly, it’s not that the Brazilian engineers were any less clever than their Western counterparts: they displayed considerable ingenuity getting a network card to work at all using primarily domestically-produced components. The tragedy is instead of using their brainpower to create industry-leading technology, most of their effort went into playing catch-up with the rest of the world. By the time protectionist policies were repealed in Brazil, the local industry was too far behind to effectively compete on a global scale.

Should the US follow Brazil’s protectionist stance on trade, it’s conceivable that some day I might be remarking on the quaintness of American network cards compared to their more advanced Chinese or European counterparts. Trade barriers don’t make a country more competitive – in fact, quite the opposite. In a competition of ideas, you want to start with the best tech available anywhere; otherwise, you’re still jogging to the starting line while the competition has already finished their first lap.

Stand Up and Be Heard

There is a sliver of good news in all of this for American Makers. The list of commodities targeted in the trade war is not yet complete. The “List 2” items – which include all manner of microchips, motors, and plastics (such as 3D printer PLA filament and acrylic sheets for laser cutting) that are building blocks for small businesses and Makers – have yet to be ratified. The USTR website has indicated in the coming weeks they will disclose a process for public review and comment. Once this process is made transparent – whether you are a small business owner or the parent of a child with technical aspirations – I encourage you to please share your stories and concerns on how you will be negatively impacted by these additional tariffs.

Some of the List 2 items still under review include:

9030.31.00 Multimeters for measuring or checking electrical voltage, current, resistance or power, without a recording device
8541.10.00 Diodes, other than photosensitive or light-emitting diodes
8541.40.60 Diodes for semiconductor devices, other than light-emitting diodes, nesoi
8542.31.00 Electronic integrated circuits: processors and controllers
8542.32.00 Electronic integrated circuits: memories
8542.33.00 Electronic integrated circuits: amplifiers
8542.39.00 Electronic integrated circuits: other
8542.90.00 Parts of electronic integrated circuits and microassemblies
8501.10.20 Electric motors of an output of under 18.65 W, synchronous, valued not over $4 each
8501.10.60 Electric motors of an output of 18.65 W or more but not exceeding 37.5 W
8501.31.40 DC motors, nesoi, of an output exceeding 74.6 W but not exceeding 735 W
8544.49.10 Insulated electric conductors of a kind used for telecommunications, for a voltage not exceeding 80 V, not fitted with connectors
8544.49.20 Insulated electric conductors nesoi, for a voltage not exceeding 80 V, not fitted with connectors
3920.59.80 Plates, sheets, film, etc, noncellular, not reinforced, laminated, combined, of other acrylic polymers, nesoi
3916.90.30 Monafilament nesoi, of plastics, excluding ethylene, vinyl chloride and acrylic polymers

Here’s some of the “List 1” items that are set to become 25% more expensive to import from China, come July 6th:

Staples used by every Maker or electronics educator:

8515.11.00 Electric soldering irons and guns
8506.50.00 Lithium primary cells and primary batteries
8506.60.00 Air-zinc primary cells and primary batteries
9030.20.05 Oscilloscopes and oscillographs, specially designed for telecommunications
9030.33.34 Resistance measuring instruments
9030.33.38 Other instruments and apparatus, nesoi, for measuring or checking electrical voltage, current, resistance or power, without a recording device
9030.39.01 Instruments and apparatus, nesoi, for measuring or checking

Circuit assemblies (like Microbit, Chibi Chip, Arduino):

8543.90.68 Printed circuit assemblies of electrical machines and apparatus, having individual functions, nesoi
9030.90.68 Printed circuit assemblies, NESOI

Basic electronic components:

8532.21.00 Tantalum fixed capacitors
8532.22.00 Aluminum electrolytic fixed capacitors
8532.23.00 Ceramic dielectric fixed capacitors, single layer
8532.24.00 Ceramic dielectric fixed capacitors, multilayer
8532.25.00 Dielectric fixed capacitors of paper or plastics
8532.29.00 Fixed electrical capacitors, nesoi
8532.30.00 Variable or adjustable (pre-set) electrical capacitors
8532.90.00 Parts of electrical capacitors, fixed, variable or adjustable (pre-set)
8533.10.00 Electrical fixed carbon resistors, composition or film types
8533.21.00 Electrical fixed resistors, other than composition or film type carbon resistors, for a power handling capacity not exceeding 20 W
8533.29.00 Electrical fixed resistors, other than composition or film type carbon resistors, for a power handling capacity exceeding 20 W
8533.31.00 Electrical wirewound variable resistors, including rheostats and potentiometers, for a power handling capacity not exceeding 20 W
8533.40.40 Metal oxide resistors
8533.40.80 Electrical variable resistors, other than wirewound, including rheostats and potentiometers
8533.90.80 Other parts of electrical resistors, including rheostats and potentiometers, nesoi
8541.21.00 Transistors, other than photosensitive transistors, with a dissipation rating of less than 1 W
8541.29.00 Transistors, other than photosensitive transistors, with a dissipation rating of 1 W or more
8541.30.00 Thyristors, diacs and triacs, other than photosensitive devices
8541.40.20 Light-emitting diodes (LED’s)
8541.40.70 Photosensitive transistors
8541.40.80 Photosensitive semiconductor devices nesoi, optical coupled isolators
8541.40.95 Photosensitive semiconductor devices nesoi, other
8541.50.00 Semiconductor devices other than photosensitive semiconductor devices, nesoi
8541.60.00 Mounted piezoelectric crystals
8541.90.00 Parts of diodes, transistors, similar semiconductor devices, photosensitive semiconductor devices, LED’s and mounted piezoelectric crystals
8504.90.75 Printed circuit assemblies of electrical transformers, static converters and inductors, nesoi
8504.90.96 Parts (other than printed circuit assemblies) of electrical transformers, static converters and inductors
8536.50.90 Switches nesoi, for switching or making connections to or in electrical circuits, for a voltage not exceeding 1,000 V
8536.69.40 Connectors: coaxial, cylindrical multicontact, rack and panel, printed circuit, ribbon or flat cable, for a voltage not exceeding 1,000 V
8544.49.30 Insulated electric conductors nesoi, of copper, for a voltage not exceeding 1,000 V, not fitted with connectors
8544.49.90 Insulated electric conductors nesoi, not of copper, for a voltage not exceeding 1,000 V, not fitted with connectors
8544.60.20 Insulated electric conductors nesoi, for a voltage exceeding 1,000 V, fitted with connectors
8544.60.40 Insulated electric conductors nesoi, of copper, for a voltage exceeding 1,000 V, not fitted with connectors

Parts to fix your phone if it breaks:

8537.10.80 Touch screens without display capabilities for incorporation in apparatus having a display
9033.00.30 Touch screens without display capabilities for incorporation in apparatus having a display
9013.80.70 Liquid crystal and other optical flat panel displays other than for articles of heading 8528, nesoi
9033.00.20 LEDs for backlighting of LCDs
8504.90.65 Printed circuit assemblies of the goods of subheading 8504.40 or 8504.50 for telecommunication apparatus

Power supplies:

9032.89.60 Automatic regulating or controlling instruments and apparatus, nesoi
9032.90.21 Parts and accessories of automatic voltage and voltage-current regulators designed for use in a 6, 12, or 24 V system, nesoi
9032.90.41 Parts and accessories of automatic voltage and voltage-current regulators, not designed for use in a 6, 12, or 24 V system, nesoi
9032.90.61 Parts and accessories for automatic regulating or controlling instruments and apparatus, nesoi
8504.90.41 Parts of power supplies (other than printed circuit assemblies) for automatic data processing machines or units thereof of heading 8471

When More is Less: China’s Perception of the iPhone X “Notch”

Sunday, February 11th, 2018

I recently saw a Forbes article citing rumors that the iPhone X is being cancelled this summer. Assuming the article is correct, it claims that a “lack of interest in China” is the main reason for the relatively early cancellation of production. They’re hoping that 6.1″ and 6.5″ versions of their phone with a less pronounced Face ID notch would excite Chinese customers.

The notion of a “less pronounced” Face ID notch is what got me — Apple embracing the notch as iconic, and worth carrying forward to future models, rather than simply making the top bezel a bit larger and eliminating the notch altogether. Historically, Apple has taken a “less is more” strategy, meticulously eliminating even the tiniest design facets: replacing radii with splines, polishing off injection mold parting lines, even eliminating the headphone jack. Putting a notch on the iPhone feels a bit like watching a woman painstakingly apply face whitening cream day after day to remove tiny blemishes, and then don a red clown nose.

Like the red clown nose, the problem with pushing the notch is that anyone can put one on, should they decide it’s a feature they want to copy. Xobs recently showed me an app on his Xiaomi Mix 2 that does exactly that. Below is what his Xiaomi Mix 2 looks like normally.

It’s got a screen that goes right up to the top bezel, without a notch.

Interestingly, there’s an app you can run called “X out of 10” that simply draws in the notch (including subtle details like a simulated camera lens). Here’s the app in the off state:

And now in the on state:

Once activated and given permission to draw over other apps, Xiaomi Mix 2 users can don the red clown nose and experience the full glory of the iconic Apple notch all the time:

This glass-half-empty situation is a parable for design leadership versus market perception: if a market previously lacked a smartphone with a minimal top bezel, the notch is perceived as “How innovative! I’ve got extra pixels to the left and right of my earpiece/camera assembly!”. But once a market has seen a smartphone with minimal top bezel, the notch turns into “Hey where did my pixels go? What’s this notch doing here?”. It’s a case where the additional design feature is seen as a loss of function, not a gain.

Thus it will be interesting to see if Apple’s bet to introduce a phone with a larger screen that can compete head to head in China against the likes of the Xiaomi Mix 2’s 6″ screen will pay out, especially if Apple retains the notch.

Of course, as the design space for phones becomes more and more crowded, Apple’s room to maneuver becomes increasingly limited. The minimalist design space is winner-takes-all: the first company to elegantly remove a design facet wins the minimalism race, and now that Xiaomi has planted a flag in the bezel-less top space, it may be that Apple has no option but to sport the top-notch, or run the risk of being seen as copying a Chinese company’s design language.

Edit (added Feb 12, 17:43 SGT):

Several comments have been made about the iPhone X still having a greater amount of screen real estate than the Xiaomi Mix 2.

To clarify, the key point of the article isn’t about comparing active area. It’s about running out of options to place a sensor cluster, because the smartphone design space has gotten a lot more competitive. To spell it out explicitly, there are three main ways this can play out:

    1) Apple can’t hide a camera underneath the display, and so there always has to be a “dark area” that’s an affordance for the camera (and more significantly, the multitude of sensors that comprise FaceID).
    2) Apple (or perhaps someone else!) figures out how to hide a camera under the display and creates a true bezel-to-bezel phone.
    3) Apple convinces us all that the notch is truly iconic and it’s hailed as one of the greatest design innovations of this decade (hey, they did it for the headphone jack…).

In the case of 1 (Apple can’t hide the sensor cluster), these are their options:

    (a) Continue to push the top notch as iconic – status quo
    (b) Lose the notch by increasing top bezel area for sensor cluster — that’s “taking a step backward” – so not really an option
    (c) Move sensor cluster to the bottom, with no notch. This is copying the Xiaomi Mix 2 almost exactly – so not an option
    (d) Continue to push the notch as iconic, but put it on the bottom. Risks the top-half of the phone looking too much like a Xiaomi Mix 2 – so probably not an option

So in the race for minimalism, because Xiaomi has “claimed” the minimal bezel top-half design space, Apple has far fewer options for backing out of the notch, should it be perceived by the market as a loss of real estate, rather than a gain. But this is the world Apple has created for themselves, by patenting and litigating over the rounded rectangle as a phone design.

In the case of 2 (Apple figures out how to hide all the sensors), Apple can really win the minimalist design space if they can do it without reducing functionality. However, if they could have done this, I think they would have done it for the X. They certainly have the cash to throw the equivalent budget of SpaceX’s Falcon rocket program into eliminating that notch. Indeed, perhaps in a year or two Apple will come out with some crazy fiber optic wave guide assembly with holographic lenses to wrap light around the bezel into a sensor assembly stashed in the body of the phone. I wouldn’t put it beyond them.

But until then, it seems Apple is looking at option (1) for the next generation at least, and the point of this article is that the competition has robbed Apple of at least two options elegantly to back out of the notch and create a phone with greater appeal to markets like China.